,svm是什么?

用户投稿 151 0

关于“svm_php”的问题,小编就整理了【5】个相关介绍“svm_php”的解答:

svm是什么?

svm含义如下:

SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。

扩展资料:

它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。

它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。

svm什么意思?

SVM是由模式识别中广义肖像算法(generalized portrait algorithm)发展而来的分类器,其早期工作来自前苏联学者Vladimir N. Vapnik和Alexander Y. Lerner在1963年发表的研究 。1964年,Vapnik和Alexey Y. Chervonenkis对广义肖像算法进行了进一步讨论并建立了硬边距的线性SVM 。此后在二十世纪70-80年代,随着模式识别中最大边距决策边界的理论研究、基于松弛变量(slack variable)的规划问题求解技术的出现,和VC维(Vapnik-Chervonenkis dimension, VC dimension)的提出[12] ,SVM被逐步理论化并成为统计学习理论的一部分 。1992年,Bernhard E. Boser、Isabelle M. Guyon和Vapnik通过核方法得到了非线性SVM 。1995年,Corinna Cortes和Vapnik提出了软边距的非线性SVM并将其应用于手写字符识别问题,这份研究在发表后得到了关注和引用,为SVM在各领域的应用提供了参考。

是扫描速度调制;智能音量管理;系统虚拟机;支持向量机;空间矢量调制的意思。

例句:

The application and research progress of SVM in spatial information processing

支持向量机在空间信息处理领域的应用研究

SVM是什么?

SVM的全称是Support Vector Machine,即支持向量机,主要用于解决模式识别领域中的数据分类问题,属于有监督学习算法的一种。

SVM是什么的缩写?

支持向量机(Support Vector Machine)

是一种监督模式识别和机器学习方法,采用最大分类间隔准则实现有限训练样本情况下推广能力的优化。通过核函数间接实现非线性分类或函数回归,支持向量机通常简写作SVM。

SVM是一个具有稀疏性和稳健性的分类器。

svm原理?

SVM 是一种二类分类模型。它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器。

• 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;

• 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机;

• 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。

硬间隔最大化(几何间隔)、学习的对偶问题、软间隔最大化(引入松弛变量)、非线性支持向量机(核技巧)。

到此,以上就是小编对于“svm_php”的问题就介绍到这了,希望介绍关于“svm_php”的【5】点解答对大家有用。

抱歉,评论功能暂时关闭!